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1. Introduction

Recently, theoretically determined profile drags have been /593%
used with increasing frequency in the =selection of a profile,
for instance for the sailplanes FS 24 Phoenix [1], SB 6 [2],
SB 7 and BS 1. Comparing such theoretical drags with experimental
results shows the extent to which this procedure is valid, saving.
as it does, a considerable amount of time and money.

2. Features of Theoretical Drag Calculation

The calculation of the theoretical drag starts from pressure
distributions around the wing profiles, as derived from potential
theory. With the aid of boundary-layer theory, the assccilated
friction drags are determined. This means that the so-called
form drag of wing profiles, which is based on more extensive
flow separation, is not calculated. It is true that boundary-
layer theory can provide clues as to the expected point of
separation of the flow, and thus establish whether an additional
form drag can be anticipated; it says nothing, however, about
the magnitude of this drag. Hence, the theoretical drag does
not mean much unless friction drag alone is the crucial factor.
It will turn out that this is true over a wider range than had
been generally believed.

Calculating friction drag requires a certain amount of
care, if the results are to be reliable. 1In particular, the
calculation should take into account the difference between
laminar and turbulent friction, and thus the transition from
a laminar boundary layer to a turbulent one. This is accomplished
with the aid of various advances in the field of boundary-layer
calculations, which are currently being published [3]. For the
boundary-layer transition, one must not only find the instability

Numbers in the margin indicate pagination in the foreign text.



of the laminar boundary layer, but also recognize that there
will be a certain distance, depending on the so-called Reynolds
number Re, between the instability and the beginning of the
turbulent boundary layer, i.e. the transition. Determination
of this distance draws on experimental results.

The boundary-layer transition requires particular attention
in another respect as well. At low Reynolds numbers, the
turbulent boundary layer frequently develops in experiments some
distance beyond the end or separation of the laminar boundary
layer [4]. Theory also provides clues to this phenomenon,
frequently called a "separation bubble." As reported in detail
in [3], if the theory does not find the boundary-layer transition
to be ahead of the laminar separation point (at low Re numbers),
the calculation must be continued from the latter point, starting
immediately with the formulas for the completely turbulent
boundary layer. Although this does not correctly reflect
conditions in a laminar bubble, it has been found that the
energy exchange allowed for in the turbulent boundary layer is
frequently not sufficient to rapidly eliminate the tendency of
the laminar boundary layer to separate. In place of the
separation bubble, a turbulent boundary layer is then calculated,
the form of which remains close to separation for some distance.
This purely theoretical result, termed a "bubble analog'" has
many parallels with the separation bubble. It almost never
occurs unless the laminar calculation proceeds to separaticn,
without the transition condition being satisfiled, and it is
very sensitive to the pressure distribution near the separation
point. If, following laminar separation, there is a stretch with
a low pressure gradient, a healthy turbulent boundary layer can

develop down to Reynolds numbers about 0.25 - 106; if, in the
calculation, laminar separation 1s followed by a steeper

pressure gradient, the bubble analog appears up to Re = 2.5 - 106



Since, in the bubble analog, there is more energy transport
to the wall than should be present in the bubble itself, it
seems reasonable to expect bubbles in experiments whenever the
theory exhibits a bubble analog; at least one goal in the
theoretical development of profiles ought to be the disappearance
of the bubble analog.

As in the case of final separation, this analog cannot
account for the drag increase generated by the bubble itself.
It can only indicate that an additional bubble drag of unknown
magnitude must be expected. In all the theoretical drag curves
below, this 1s indicated by showing them as sollid lines without
the bubble analog, and as broken lines with it. A theoretical
drag curve 1s therefore too favorable by an unknown amount, When
it is a broken curve. This will be illustrated by the
following diagrams.

~ 3.  Theoretical Results for an

Example

Fig. 1 depicts a wing profile

ST with some potential-theoretical

HERN velocity distributions U (x).

This is the well-known picture.

For a large angle of attack «,

=N the velocity U at the nose is

° o %0 large on the upper side and small
on the lower side. Accordingly,
if o 1s large, there 1s a large
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Fig. 1. The theoretically and
exgerimentally studied prgfile velocity drop (pressure gradient)

with velocity distributions on the upper side, and a small
U (x) for U4 angles of attack.

one on the lower side. The angles
of attack always are expressed

relative to the horizontal line in Fig. 1.



The mathematical method by which the potential-theory
connection between profile shape and velocity distribution is
determined is not inherently important, as long as the neglected
terms are not too large. The methods of conformal mapping [5] /594
and of assuming singularities along the profile contour [6]
are nevertheless preferable to approximations which assume
Singularities along the profile chord. The profile depicted in
Fig. 1 was calculated by methods of [5] from certain properties
of the velocity distribution, described e.g. by A. Raspet [7].

A change in the angle of attack 1is easy to handle once the
velocity distribution is known for one value of a. In reality,
many more values of a were allowed for than are shown in Fig. 1.

For each velocity distribution
corresponding to one of the

-~ qeo

‘ . Theory /fy/;/ many values of a, the boundary-
s /4
”106 . layer calculation was carried
= out for four Re numbers. The
"~-~~~g: : - calculated drag coefficients
§& cg are plotted against o in Fig. 2.
\ {

) As mentioned in the preceeding
| section, the bubble analog 1is
indicated by a broken line.

(% U R S _(_:Qidoo

ot o w u Therefore, additional bubble
drag must be anticipated where

Fig. 2. Theoretical drag the curves are broken.

coefficients cg for 4 Reynolds
numbers, plotted against a.

4. Comparison with Experimental Drags

The profile of Fig. 1 was studied not only theoretically,
but also experimentally In great detail. Fig. 3 depicts the
experimental curves corresponding precisely to those in Fig. 2
with respect to Reynolds number and scale. The experimental



curves were obtained with a high
[l _ degree of accuracy by F. X. Wortmann
e and G. Althaus.® At first, the
theoretical curves do not seem
very similar to the experimental
ones. The comparisons of
theoretical and experimental
curves shown in Figs. 4 through
7 for the four Reynolds numbers
demonstrate, however, that the

large discrepancies occur almost

entirely where the theoretical
lines are broken, and thus where
the theory suggests the risk of

Fig. 3. Experimental drag laminar bubbles. In fact, the
coefficients cq for U Re

numbers, plotted against a. bubbles were always clearly

recognized in the experiments,
whenever the drags were unexpectedly large.

ﬁ;L“_.___. o Individually, the diagrams
provide even more information.
Fig. U4 shows that the calculated

2}fg%§f§" drag coefficients agree excellently

‘ with theory at Re = 3 - 106, and
0 - - _— only the very small laminar
"bucket" within which theory
predicts laminar flow on the
upper and lower sides simultaneously,
was not confirmed by the
experiment. This is not surprising,
since the measured points are
Fig. 4. Comparison of theoreti- further apar: than the calculated

giﬁ(i?daixgzrimgnfaiog%rves for ones, and since the laminar

lInstitute for Aeordynamics and Gas Dynamics at Stuttgart
Technical Academy, Prof. A. Weilse.
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boundary layers are close to transition, which will make the
measurements very sensitive and will tend to scatter them.

Note particularly the agreement outside the laminar bueket,’ where
either the upper side or lower side has a predominantly turbulent
boundary layer.

$ Fig. 5 depicts the comparison
Py at Re = 2,0 » 10°. Here again,
Re = 2’196,,/ the theor.tical bucketiksmot
f ;(' found in the experiment; other-
Theory
(;4442 wise, the agreement 1is good.
t ' <\
' With the Reynolds number of
- Re = 1.5 106 for the dlagram
‘ Expezﬁm;;5 ' in Fig. 6, theory for the first time
o o lo__ ] egxa00 exhibits a bubble analog, namely

for small angles of at*=2-% on
the upper side of the profile.
Fig. 5. Comparison of This immediately makes the
gﬁigzzt%gglc:n?uixg:régegtal agreement much wc-~se, although
2 - 106, the theoretical results remain
good in the other reglons,

including the laminar -bucket.

For the smallest of the four Reynolds numbers, namely
Re = 106, there 1s even more bubble analog in the thecry, occurring
to some extent on the underside of the proflle as well. The
experiment (Fig. 7) also exhibits the bubble, and correspondingly
high drag. Where there are no bubbles, the theoretical laminar
vircket 1s reproduced well, together with the reglion above it.

On the whole, theory thus provides good results, particularly
with regard to bubble anizlogs. If theory does not predict this
analog for practical flight situations, the risk of an actual
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Fig. 6. Comparison of
theoretical and experimental
curves for cg (o) at
Re = 1.5 - 106.
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Fig. 7. Comparison of
theoretical and experimental
curves for cg _(a) at

Re = 1.0 « 10°.

occurence of bubbles will also
be srall. Of course, it must

be remembered that in free
flight with falling angle of
attack, the Reynolds number
increases. In our example,

this means that few bubbles must
be feared in free flight, since
the small angles of attack, for
which bubbles occur at small
Reynolds numbers, will only be
achieved at high speeds and thus

high Reynolds numbers. Nevertheless,

the profile in Fig. 1 1is no
longer the best calgulated one.
We used it as an example,
because it is the one for which
che most exhaustive measurements
have been made.

5. Lift Properties

Aithough the principal
purpose of this report 1is to
examine the theoretical drag
calculation, a brief comparison
with regard to 1lift would still
be valuable, since the dependence
of drag on 1lift is crucial for
aircraft performance.

Potential theory yields
only thes angle of attack of zero
1ift and 1increase in the 1ift



coefflcient c3 for the profile. This 1s the straight line

shown in Fig. 8. It is known that this potential-theoretical

1ift is not achieved, because of boundary-layer displacement

and small flow separations near the tralling eage. Attempts /595
have been made, e.g. in [8], to estimate the effect of boundary-
layer displacement on 1ift. This would also be easy to do with
the present boundary-layer results. However, in many cases,

the primary effect will be that of small boundary-layer

separations near the tralling edge. Theoretical analysis of

this effect is a field in itself, and involves problems which
probably cannot be solved reliably except by wake -aneory. However,
tne general case in that theory has not been solved mathematically.

Since boundary-layer theory
provides at least a clue to the

0w,

point of separation, experimental

1ift loss can be compared with
the position of the point of
separation at Re = 2 » 106 in
Fig. 8. Ax,
distance from the point of

denotes the

separtion on the upper side

to the trailing edge (relative
to profile ¢hora ). For
simplicity, the scale for

Fig. 8. Theoretical and plotting this variable in Fig. 8
experimental -~urve for 1lift
coefficlent cj as a function

AT A A B A

is the same as the ¢} scale.

of a. Position of point of It should therefore be noted
separation on the upper =

side and velocity at this that for 10 AxA 0.5, separation
point. occurs 0.05 chord depths or 5%

of the chord 1lemgth from the
tralling depth. The separations shown are therefore always
small. Neverthaless, there i1s a conspicuous relationship between
AxA and 1ift loss. Even at a = 0, where the separation begins



to migrate forward at a very slow rate, and appreciable 1lift
loss can be observed. It 1s noteworthy that the separations
do not cause any major increase in drag in the angle-of-attack
reglion of this 1lift loss, as indicated by Fig. 5. This is
consistent with the results of wake theory, accerding to which
flow separation does not cause drag to increase as long as the
flow velocity at separation is no greater than the relative
air speed [9]. Therefore, Fig. 8 also includes the ratio

U between flow velocity at the calculated point of separation
and relative air speed. 1In fact, in the region of interest,
this value is not much greater than 1, which confirms the
applicablility of the wake-theoretial results.

Unfortunately, this finding does not mean that small
separations can be tolerated without disadvantage. In many
cases, there may well be no increase in drag; nevertheless,
the 1ift loss is just as harmful for the polar dlagram, in
which drag 1s plotted against 1ift. The discovery that the
principal harm of small separations is thelr effect on 1lift
has stimulated further investigations, which will certainly
provide a number of valuable results.

6. Summary

Careful comparisons of theoretical and experimental
profile drags indicate that the lncreasing use of theoretical
drag calculations is Justified.
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